Evaluation of Use of a Protein-Based Bioadhesive in Neurosurgical Procedures

Arun Kumar MB BS M.Med (Neuro), Nicholas F Maartens MB ChB FRCS(SN)
Andrew H Kaye MB BS MD FRACS

Department of Neurosurgery, The Royal Melbourne Hospital & The University of Melbourne, Victoria, Australia

Introduction

Postoperative cerebrospinal fluid (CSF) fistula following neurosurgery is associated with increased morbidity and mortality. This prospective study evaluates the efficacy of a new bioadhesive, BioGlue Surgical Adhesive (“BioGlue,” CryoLife, Inc., Kennesaw, GA) as a dural sealant in preventing CSF fistula. The complications associated with its use are investigated and the literature regarding dural closure is reviewed.

Methods

BioGlue was applied to the dura mater as a sealant in 333 patients undergoing 333 neurosurgical procedures over a period of 31 months at the Royal Melbourne Hospital. It was used where watertight closure of the dura mater could not be ensured by primary suture alone and for reconstruction of the sellar floor following transsphenoidal adenohypophysectomy. It was used in 184 supratentorial (55.25%), 80 infratentorial craniotomies (24.02%), 58 transsphenoidal adenohypophysectomies (17.41%) and 11 spinal procedures (3.30%). The incidence of CSF Fistula as a complication of surgery with intradural exposure was analysed.

Results

Two patients (0.6%) in this cohort who had undergone posterior fossa craniotomy developed a CSF Fistula. One procedure was for evacuation of a cerebellar haematoma and the other was for redo excision of a metastasis. Both procedures were complicated by hydrocephalus. There were no adverse reactions or complications associated with the use of BioGlue. BioGlue did not interfere with postoperative imaging studies.

Conclusion

Compared to published historical data, BioGlue reduced the incidence of postoperative CSF leakage complications in neurosurgery procedures. BioGlue is an effective adjunct in dural closure to prevent CSF fistula with enhanced bonding properties. It is simple to use and in this study there were no complications associated with its use.

Reconstruction of the Sellar Floor Using BioGlue Surgical Adhesive Following Transsphenoidal Procedures

Arun Kumar MB BS M Med (Neuro), Nicholas F Maartens MB ChB FRCS(SN) & Andrew H Kaye MB BS MD FRACS

Department of Neurosurgery, Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Victoria, Australia

Objective

Cerebrospinal fluid rhinorrhea, pneumoencephalus and meningitis are serious complications following transsphenoidal excision of sellar, suprasellar and parasellar lesions. This study evaluates the use of a new bioadhesive, BioGlue Surgical Adhesive (“BioGlue,” CryoLife Inc., Kennesaw, GA) as an adjunct in reconstructing the sellar floor and preventing CSF fistula and investigates the possible complications associated with its use.

Methods

Between January 2001 and July 2003, BioGlue was used to help reconstruct the sellar floor after endonasal transsphenoidal procedures in 58 patients (56 pituitary adenoma, 1 meningioma and 1 Rathke’s cyst) at our facility. All 58 patients underwent endonasal transsphenoidal submucosal transsphenoidal resection of sellar region tumors using microsurgical techniques. In all cases, the resection cavity was packed with autologous abdominal fat graft. The anterior wall of the pituitary fossa was reconstructed with a customised fragment of bone taken from the sphenoid. This fragment was reinforced and secured in place with BioGlue. All of the patients had similar selection criteria, pre-operative evaluation and post-operative management.

In all cases, regardless of whether a CSF leak was identified, the resection cavity was packed lightly with autologous abdominal fat graft. The anterior wall of the pituitary fossa was then reconstructed with a customised fragment of bone taken from the sphenoid or nasal septum. While this fragment was being held in position with a bayonet forceps against the defect in the floor of the pituitary fossa, from within the sphenoid sinus, it was reinforced and secured in place with BioGlue. This was introduced via a malleable plastic 10cm extender tip under direct vision, incrementally and as required once the mixing tip had been primed ensuring the BioGlue components had been appropriately mixed. The quantity of BioGlue used varied between 5-10ml. The nasal cavity was then packed with iodine impregnated ribbon gauze (82PP) that was removed after 48 hours.

Results

Follow-up ranged from 40 days to 890 days with a median of 298 days. There were no occurrences of postoperative CSF rhinorrhea, allergic rhinitis, meningitis, pneumocranium, granulomas or other complications associated with the use of BioGlue.

Conclusions

This technique of reconstruction of sellar floor using BioGlue is simple and time efficient in preventing CSF fistula formation following transsphenoidal procedures for sellar region lesions.

Table: Pathological diagnoses of 58 patients where BioGlue was used for sellar floor reconstruction

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>No. of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>GH-secreting adenoma</td>
<td>18</td>
</tr>
<tr>
<td>Prolactin-secreting adenoma</td>
<td>14</td>
</tr>
<tr>
<td>Rathke’s cyst</td>
<td>15</td>
</tr>
<tr>
<td>Corticotroph cell adenoma</td>
<td>5</td>
</tr>
<tr>
<td>Null cell adenoma</td>
<td>5</td>
</tr>
<tr>
<td>GH and prolactin-secreting</td>
<td>2</td>
</tr>
<tr>
<td>Haemorrhagic infarct</td>
<td>1</td>
</tr>
<tr>
<td>Cysts</td>
<td>2</td>
</tr>
<tr>
<td>Rathke’s cyst</td>
<td>1</td>
</tr>
</tbody>
</table>